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Congruence Subgroups of the Modular Group 

By Morris Newman 

Abstract. The congruence subgroups of the classical modular group which can be de- 

fined as the automorphs modulo q of some fixed matrix are studied, and their genera 

determined. 

Let F = SL(2, Z). A congruence subgroup of r is any subgroup containing a 
principal congruence subgroup F(q), defined as the set of elements A of F such 
that A I mod q, where q is a positive integer. Of these one of the most important 
is the group ro(q), defined as the set of elements (a b) belonging to F such that 
c 0 mod q. It is known that 

(F:F(q)) = q3 JI (1 - 1/p2), (F: o(q)) = q JJ (1 + l/p), 
plq plq 

where p runs over the distinct primes dividing q. 
Let C = {I, - I} be the center of F, and F = F/C = PSL(2, Z). Then F is 

the classical modular group, and we will be interested here in the congruence subgroups 
of F, which are the subgroups of F corresponding to the congruence subgroups of 
F under the natural homomorphism p of F onto r. In particular we will study 
those congruence subgroups which can be defined as the set of automorphs modulo q 
of some fixed 2 x 2 matrix over Z. 

If Q2 is a subgroup of r, then Q2 will denote the subgroup of r correspond- 
ing to Q2 under p. It is more convenient to study the problem for r and its sub- 
groups, and then make the transition to r by means of Theorem 1 below. Also, we 
will choose q to be a prime > 3 for simplicity of exposition. 

We first prove 
THEOREM 1. Let Q2 be a subgroup of r. Then the subgroup Q2 of F cor- 

responding to Q2 under the natural homomorphism p is 

Q = {&2, - I}/C. 

Trlus 

t1/2 (F: E), -fQ 

Proof If G is any group and N a normal subgroup, then any subgroup H 
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of G is carried into HN/N under the natural homomorphism modulo N. Now 
C = Q{I, - I} = {2, - I}, so that QC = Q if -I E Q, and QC = Q + (- I) 

if -I Q2. Since 

(r: 0) = (rl/C: QC/C) = (r: 0C) =(r Q)/(QC:Q0), 
the result follows. 

As an illustration of this theorem, note that - I E ro(q), but - I r 1(q), since 
q > 2. Hence 

(r : r(q)) = ?2(r 17(q)), (:r 7r0(q))= (r ro (q)). 

Throughout the following we put 

lO' 1\ 
T- 

i1 0 

Then every element A of r satisfies 

(2) ATAT= T, 

where AT denotes the transpose of A. Indeed, (2) is satisfied if R is any commu- 
tative ring with identity, and A any element of SL(2, R). A convenient way to 

think of 17 is as the set of elements of 17 in which a matrix is identified with its 

negative. 
Let K denote an arbitrary 2 x 2 matrix over Z. The subgroup of r1 con- 

sisting of all matrices A E 17 such that AKA = K mod q, will be denoted by 

17(K, q). It is clear that r(K, q) is a congruence subgroup of f7 containing the prin- 
cipal congruence subgroup r(q). 

If R is any commutative ring with identity 1 and if M is any 2 x 2 matrix 

over R, the subgroup of A = SL(2, R) consisting of all matrices A EE A such that 

AMAT = M, will be denoted by A(M, R). Since 

r(K, q)lr(q) - A(K, Zq), 

where A = SL(2, Zq) and Zq is the ring of integers modulo q (and so GF(q) 
when q is prime), it will suffice to work with the latter group when this is desirable. 
The transition between the two depends on the result that if A is an integral matrix 
such that det A 1 mod q, then an integral matrix B exists such that B A mod q 

and det B = 1 (see [2, pp. 36-37]). 
We have the following: 
LEMMA 1. The groups r(K, q) satisfy 

(3) r(cQK, q) = r(K, q), if (oa, q) = 1, 

(4) r(BKBT, q) =Br(K, q)B- , if B E r. 

Proof. (3) is clear, since A(cK)AT = aK mod q if and only if AKAT-K 

mod q, since (a, q) = 1. As for (4), suppose that A EE 1(BKBT, q). Then 
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ABKBTAT = BKBT mod q, 
so that 

(B- 1AB)K(B- lAB)T K mod q. 

Hence B- 'AB E r(K, q), A C Br(K, q)B- 1. Thus r(BKBT, q) C Br(K, q)B-1. 

The argument may be reversed to show that BP(K, q)B- 1 C r(BKBT, q). Hence (4) 

holds and the proof is complete. 
The next result, which we state in somewhat more general form, reduces the 

study of P(K, q) to the case when K is symmetric: 
THEOREM 2. Let R be any commutative ring with identity 1 in which 2 

is a unit. Put A = SL(2, R) and let M = ( 0) be any matrix over R. Then 

A(M, R) = A(M + MT, R). 

Proof Suppose first that A E A(M, R), so that AMAT = M. Then also 

AMTAT = MT, so that A(M + MT)AT = M + MT. Hence A E A(M+MT, R) and 

so A(M, R) C A(M + MT, R). 

Next suppose that A C A(M + MT, R) so that A(M + MT)AT = M + MT. 
Then if x is any element of R, 

A(M+MT +xT)AT =M+MT +xT, 

where T= (_ 1), because of (2). Since M -MT - (3 - )T, the choice x = 

- y implies that A(2M)AT = 2M, so that AMAT = M, since 2 is a unit of R. 

Hence A EE A(M, R), and so A(M + MT, R) C A(M, R). 
It follows that A(M, R) = A(M + MT, R) and the proof is complete. 
COROLLARY 1. We have 

P(K, q) = r(K + KT, q). 

Proof Since q is odd, 2 is a unit of Zq and the theorem may be applied to 

A(K, Zq) and so to r(K, q). 
Lemma 1 and Corollary 1 allow us to reduce the study of r(K, q) to three 

simple types: 
THEOREM 3. he group r(K, q) is either r or else is conjugate over r to 

one of the groups r(Kn, q), where Kn = (I ?) and n = 0, 1, or some fixed non- 

square of Zq. 
Proof. If K is skew-symmetric, Corollary 1 implies that 

r(K, q) = P(K + KT, q) = I(0, q) = P. 

If K is not skew-symmetric, Corollary 1 implies that K may be taken symmetric 
and different from 0. We now work with A(K, Zq). Since any symmetric matrix 

over a field of characteristic = 2 is congruent by a matrix of determinant 1 to a 

diagonal matrix (see [2, Chapter 4]) K may be taken diagonal, by (4) (replacing 

A(K, Zq) by a conjugate group if necessary). Thus we may assume that K = ( ;), 



210 MORRIS NEWMAN 

where not both o and 6 are 0, and so we may assume that oa = 0, and therefore 
1, by property (3). If 6 = 0, then we obtain (' ?). Suppose that 6 * 0. We may 

write 6 = n/r2, where n is either 1 or some fixed nonsquare of Zq and r E Zq. 
Then replacing K by rK we get (O nr0 ) Since n $ 0, we may determine x, y E 

Zq so that x2 + ny2 = r. Then by virtue of the identity 

Ir O0 x y /1 0/x -nylr\ 
\0 nIrJ \ nylr xlr \O nJ y xlr 

we see that K may be replaced by (1 ?). This completes the proof. 
The important parameters associated with a subgroup of the classical modular 

group are the number of elliptic classes e2 of period 2, the number of elliptic classes 

e3 of period 3, the number of parabolic classes t, the index ,, and the genus g. 

These are related by the formula 

g = 1 + p/12 - t/2 - e2/4 - e3/3. 

We refer the reader to [2, Chapter 81, where these terms are defined and the principal 

facts about them given. We assume these known in what follows. 
Our goal will be the calculation of these parameters for the groups r(K, q). 

Since conjugate groups have the same parameters, it is only necessary to consider the 

cases 

K=K0 ( )- K =KV= ) K =KnJ=( 0 
(? ?) (? 1 (0 n) 

where n is some nonsquare of Zq, by virtue of Theorem 3. 
Put K6 = (1 0), where 6 = 0, 1, or n, and let A = (a b)EA(K5, Zq). Then 

AK6AT =Ks, K6AT = A Ks, 

/1 O\a c\ d -b\/ IOX 

\O 6/b d \-c al\ 0 

Hence a = d, c = - b6, so that 

(5) A=( a2?+ bb2 = 1. 

Let X be the Legendre symbol modulo q. Then the number of solutions of the con- 

gruence x2--a mod q is just 1 + x(a); and the value of the sum la mod qX(X -a) 

is - 1 if (a, q) = 1 and q - 1 otherwise. It follows from (5) that the order of the 

group A(K., Zq) is 

E {1 + x(1 - 6b2)} = q + X(l - 
b mod q b mod q 

so that 
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2q, 5 = 
(P(K6, q): P(q)) = 2q (6, 6=0 

t q - x(- 8), 6 = 1, n. 

Since (r: F(q)) = q(q2 - 1), this implies that 

(1/2(q2-l) 6=0, 

(r: r(K6, q)) = 

If we now note that - I E r(K, q), then Theorem 1 yields 
LEMMA 2. Let ,u(6) be the index of r(K6, q) in r. Then 

yl2 (q2-l 8 05 

g(6) = 

{q(q+X(-6)), 6=1,n. 

The elements of period 2 of P(K6, q) correspond to the elements A of 

A(K5, Zq) satisfying A2 = 2 I, or tr A = 0. Then (5) implies that a = 0, so that 

(6) A= ), 6 b2 = 1. 
\-b 0/ 

It follows that there are no elliptic elements of period 2 if 6 = 0 or n, and just 2 
if 6 = 1, given by (6) with b = ? 1. For these to be conjugate over A(Kl, Zq), 
there must be an A = (_ b) E A(K1, Zq) such that 

a b\ 0 1 \ I?-\ a b\ 

(-b a21 O 1 ) D-b a 

which implies that a = b = 0, an impossibility. Hence we can conclude 
LEMMA 3. Let e2(6) be the number of classes of elliptic elements of period 2 

of P(K6, q). Then 

(0, 6=0, 

e i() + X(6), 6= 1,n. 

The elements of period 3 of r(K6, q) correspond to the elements A of 
A(K6, Zq) satisfying A2 ? A + I = 0, or tr A = + 1. Then (5) implies that a = 

+ ?, Y b2 = 4. It follows that there are none if 6 = 0, or if x(36) = - 1. If 

x(36)= 1, let 0 be a solution of 662 - 3/. Then the elements of period 3 of 

A(K5, Zq) are given by 

-66 01/22,A4= A1(_0 1/2 A2(0 'h)' 

1/2 0 6 1/2 -0 

Sine ,0 - 1/2)i o n50 - 12 

Since A2 A 
- 

,A4 =A - it is only necessary to retain A and A3.Cery 
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A1 and A3 are not conjugate over A(K6, Zq), since tr A1 = 1, tr A3 = - 1. 
Also A2 =A-1 =A4, so that A1 and A 2 are also not conjugate over A(K,6, Zq). 
Hence there are just two classes in this case. 

Thus we have 
LEMMA 4. Let e3(6) be the number of classes of elliptic elements of period 3 

of 1(K6, q). Then 

0 , 5 0, 

e3(6) - 
I + x(36), 5 = 1, n. 

The computation of the parabolic class number of r(K6, q) depends on the fol- 

lowing result, which is given in [1]: 
THEOREM. Let G, H be subgroups of finite index of the classical modular 

group, and assume that H is a normal subgroup of G. Let Pi, 1 < i S t, be a com- 

plete set of parabolic representatives for G, and let ei be the exponent of Pi mod- 

ulo H, 1 < i < t. Then the parabolic class number of H is given by 

T 
t 

ilet 

where a = (G IH). In particular, if every parabolic element of G is already in H, 

then XT = At. 

The parabolic elements of r(K., q) correspond to the elements A of 

/A(K6, Zq) such that tr A = + 2. Then (5) implies that a = + 1 b2 = 0. Hence 

if 6 = 0, 

A =( ,(% 
O 1 0 

and if 6 = O, then b = O, A = ? I. 
Suppose first that 6 = 0. Then r(KO, q) is a normal subgroup of ro(q) of 

index ?2 (q - 1), and (1 1), (' ?) is a complete set of parabolic representatives for 

ro(q). Since each of these belongs to r(KO, q), the previous theorem applies and 
we find that the parabolic class number is 1/2 (q - 1) * 2 = q - 1, in this case. 

Next suppose that 6 # 0. Then r(q) is a normal subgroup of r(K8, q) of 

index ?2(q - X(- 6)). It is known that the parabolic class number of P(q) is 

?2 (q2 - 1). Since every parabolic element of P(K8, q) is already in P(q), the pre- 
vious theorem implies that 

1/2(q2 1) = ?(q .X( 6))T, T = q + X(6 

where r is the parabolic class number of r(K8, q). 
Summarizing, we have proved 
LEMMA 5. Let t(6) denote the number of parabolic classes of r(K6, q). Then 
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q -l, 5 0, 

q + X(- ), =1,n. 

Lemmas 2, 3, 4, 5 now yield 
THEOREM 4. Let g(6) denote the genus of P(K6, q). Then 

21 (q - 5) (q - 7), 5 = ?, 

g(6) = 
1 

(q2 -(6- x(-6))q + 5-6x(-6)- 4x(36)- 3x(6)) 6 = 1,n. 1~(2 

Considering q modulo 12, we find the following explicit formulas for g(l), 

g(n): 
(q2-5q- 8)/12, q= 1mod12, 
(q2 - 5q)/12, q= 5 mod 12, 

(q2 - 7q + 12)/12, q 7 mod 12, 

(q2-7q+4)/12, q-llmod 12, 

(q2 - 7q + 18)/12, q 1 mod 12, 
(q2 - 7q + 10)/12, q 5 mod 12, 

g(n) = (q2 - 5q - 2)/12, q- 7 mod 12, 
(q2 - 5q + 6)/12, q 11 mod 12. 

Finally,wenotethat g(6)=0 for 6 =O,q=5,7;6 = 1,q=5; and 6 =n, 
q = 5. g(6) is also 0 for the excluded primes q = 2, 3, since r(2), 17(3) are of 
genus 0. 
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